If it's not what You are looking for type in the equation solver your own equation and let us solve it.
684=2x^2+18x
We move all terms to the left:
684-(2x^2+18x)=0
We get rid of parentheses
-2x^2-18x+684=0
a = -2; b = -18; c = +684;
Δ = b2-4ac
Δ = -182-4·(-2)·684
Δ = 5796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5796}=\sqrt{36*161}=\sqrt{36}*\sqrt{161}=6\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{161}}{2*-2}=\frac{18-6\sqrt{161}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{161}}{2*-2}=\frac{18+6\sqrt{161}}{-4} $
| 3x=4x+ | | P=3/4r+5 | | 5.6-|-5.6+11.2|=z | | 7x=36+4x= | | 0.125(2/3x)+0.08(1/4)x+0.06(1/12)x=1625 | | 9+5x=7x+9-2 | | 1.07x=16+x | | -31-4h=5-5(1+5h) | | 5x-72=-8x-12 | | -3(-6x+2)-9x=3(x-5)-6 | | 10x=3x-42= | | |x^+x-5|=x^+5 | | -2x+8=x-34 | | 4n+9=49 | | 5n2+9=0 | | -3x+2=-10x+37 | | X^+x-5=x^+5 | | 7=7+b/1 | | 4x/3+x=14 | | 23-8x=10+5x | | (64/4)a-44=62 | | 15x20=x | | M=-(-4+m)+2 | | -14+3(×+5)=7(2×+4)=x | | (-2)(x=7)=0 | | 2+2d=12 | | 9+5y=2y | | 41-4x=13+10x | | 6(-2g-1)=-(13g+3) | | (4/64)a-44=62 | | 3|x-1|+5|x-1|-2|x-1|=6 | | 2n-4=30 |